No intestino de bebês recém-nascidos, uma bactéria conhecida como Bifidobacterium longum tem o papel fundamental de quebrar os carboidratos do leite e auxiliar na digestão da única fonte de alimento dos pequenos. Outra importante função da espécie é inibir a proliferação de microrganismos causadores de doenças, ajudando a equilibrar a microbiota intestinal.
Mesmo depois que o bebê cresce e passa a ter uma alimentação variada, essa bactéria probiótica persiste no intestino – agora com a função de metabolizar carboidratos associados a proteínas, moléculas conhecidas como N-glicanos.
Cientistas do Centro Nacional de Pesquisa em Energia e Materiais (CNPEM) descobriram que a persistência da B. longum no intestino adulto está justamente ligada ao fato de ela conseguir quebrar os N-glicanos – uma fonte de carbono perene nesse ambiente. Uma vez despolimerizados, esses carboidratos originam uma grande quantidade de monossacarídeos, ou seja, carboidratos simples, como glicose e manose, por exemplo.
No trabalho, apoiado pela FAPESP e divulgado na revista Nature Chemical Biology, os pesquisadores descrevem, pela primeira vez, o mecanismo molecular com que as bactérias degradam e metabolizam essas fontes de carbono. O achado abre caminho para o desenvolvimento de novos componentes para produtos alimentícios, rações para animais e produtos probióticos capazes de melhorar o funcionamento do intestino humano e de outros mamíferos.
“Descobrimos que, além de quebrar os carboidratos do leite, essas bactérias conseguem se manter em um ambiente tão competitivo como a microbiota intestinal por terem uma adaptação que as permite clivar e metabolizar os açúcares dos N-glicanos, que vêm das N-glicosilações de proteínas [adição de açúcar a proteínas] provenientes da alimentação ou do próprio trato intestinal. Vale ressaltar que os N-glicanos são oligossacarídeos química e estruturalmente complexos e nem todas as bactérias que habitam o trato intestinal conseguem clivá-los”, diz Mario Murakami, diretor científico do Laboratório Nacional de Biorrenováveis (LNBR-CNPEM).
Para elucidar todas as estratégias moleculares empregadas pela bactéria para a sobrevivência na microbiota, desde a fase neonatal até a vida adulta, os pesquisadores combinaram análises bioquímicas, mutação sítio-dirigida, espectrometria de massas, criomicroscopia eletrônica de alta resolução (crio-EM) e simulações de dinâmica molecular.
Colaboraram pesquisadores da Universidade Estadual de Campinas (Unicamp), da Emory University (Estados Unidos), da Maryland University (Estados Unidos) e do Biocruces Bizkaia Health Research Institute (Espanha).
Para a vida toda
Os autores descobriram que, além das bactérias B. longum possuírem genes que permitem utilizar os carboidratos do leite, elas também apresentam sistemas enzimáticos para a degradação de outros tipos de carboidratos. Murakami explica, que dada a complexidade dos N-glicanos, a bactéria precisa de um conjunto diverso de enzimas, com diferentes modos de ação e mecanismos de reconhecimento do substrato [molécula-alvo de uma enzima], para quebrar todas as ligações químicas presentes nesses carboidratos, além de requerer diversas enzimas para metabolizar os açúcares gerados pela degradação dos N-glicanos.
“A estrutura dos N-glicanos lembra a dos galhos das árvores. Esses galhos são compostos por distintos monossacarídeos, como manose, glicose e N-acetilglicosamina, e estão conectados por pelo menos cinco diferentes ligações químicas, gerando uma complexidade estrutural e química recalcitrante para degradação bioquímica. A partir desse estudo, conseguimos entender em nível molecular e atômico como o sistema enzimático constituído por nove enzimas de B. longum age de forma cooperativa para a desconstrução desses carboidratos complexos”, conta Murakami à Agência FAPESP.
Um aspecto interessante do trabalho foi que, ao desvendar o processo usado por essas bactérias probióticas para a clivagem de oligossacarídeos complexos, os pesquisadores descobriram também uma série de características inusitadas da B. longum.
Um exemplo é o processo metabólico raro usado por essas bactérias para metabolizar a manose. “Primeiro é isomerizada [transformação que mantém a fórmula molecular, mas altera as propriedades físicas e químicas] em frutose para depois ser fosforilada [adição de um grupo fosfato na molécula]. Porém, na grande maioria das bactérias que metabolizam a manose, ela primeiro é fosforilada e depois isomerizada. A B. longum atua por uma rota metabólica invertida em relação à usual”, explica Murakami.
Outro achado está no sofisticado mecanismo de cooperação de quatro enzimas que atuam na clivagem das ramificações de manose. Os pesquisadores verificaram que uma enzima sozinha – uma α-mannosidase da família GH38 (Bl_Man38B) – tem modo de ação generalista atípico e consegue desconstruir o N-glicano por inteiro.
Apesar da enzima Bl_Man38B ser capaz de atuar em todas as ramificações dos N-glicanos, ela ainda pode ser potencializada pela ação de uma outra enzima (α-mannosidase da família GH125), altamente específica para ligações do tipo α-1,6, acelerando o processo de degradação dos N-glicanos, que pode ser ativado em condições de estresse ou escassez nutricional.
Além disso, o mesmo processo de degradação pode ser feito pela ação cooperativa de outras duas enzimas (α-mannosidases da família GH38, Bl_Man38A e Bl_Man38B), que atuam de forma complementar sobre as distintas ligações do tipo α-1,2, α-1,3 e α-1,6. Murakami ressalta que a atuação das enzimas tem como destaque uma redundância funcional inédita para esse sistema em bactérias.
“Aprendemos com o estudo de outros filos bacterianos que geralmente as enzimas atuam de forma complementar, cada uma sendo responsável por uma etapa específica e sequencial do processo de clivagem e metabolismo. Mas observamos um mecanismo mais complexo em bifidobactérias envolvendo enzimas altamente específicas associadas com outras generalistas, o que gera um arsenal bioquímico singular e redundante para garantir a completa degradação de N-glicanos”, comenta o pesquisador.
Segundo Murakami, a B. longum apresenta um gene que codifica a enzima α-glicosidase, que permite a remoção de monoglicosilações na extremidade das antenas dos N-glicanos. Isso possibilita à bactéria também utilizar os N-glicanos não maduros. “Essa monoglicosilação bloqueia toda a desconstrução do N-glicano. As bactérias que não têm essas enzimas não conseguem utilizar os N-glicanos não maduros como fonte de carbono. Portanto, ter esse sistema enzimático versátil confere uma vantagem bioquímica à B. longum para ampliar seu espectro de atuação sobre todas as formas variantes dos N-glicanos ricos em manose”, explica.